skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jain, Shreeya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a prototype virtual reality user interface for robot teleoperation that supports high-level specification of 3D object positions and orientations in remote assembly tasks. Users interact with virtual replicas of task objects. They asynchronously assign multiple goals in the form of 6DoF destination poses without needing to be familiar with specific robots and their capabilities, and manage and monitor the execution of these goals. The user interface employs two different spatiotemporal visualizations for assigned goals: one represents all goals within the user’s workspace (Aggregated View), while the other depicts each goal within a separate world in miniature (Timeline View). We conducted a user study of the interface without the robot system to compare how these visualizations affect user efficiency and task load. The results show that while the Aggregated View helped the participants finish the task faster, the participants preferred the Timeline View. 
    more » « less
  2. Many real-world factory tasks require human expertise and involvement for robot control. However, traditional robot operation requires that users undergo extensive and time-consuming robot-specific training to understand the specific constraints of each robot. We describe a user interface that supports a user in assigning and monitoring remote assembly tasks in Virtual Reality (VR) through high-level goal-based instructions rather than low-level direct control. Our user interface is part of a testbed in which a motion-planning algorithm determines, verifies, and executes robot-specific trajectories in simulation. 
    more » « less